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ABSTRACT 

Energy standard ISO 50001 will require industries to quantify improvement in energy intensity to qualify for certification. This paper 

describes a four-step method to analyze utility billing, weather, and production data to quantify a company‟s normalized energy 

intensity over time. The method uses 3-pararameter change-point regression modeling of utility billing data against weather and 

production data to derive energy signature equations.  The energy signature equation is driven by typical weather and production data 

to calculate the „normal annual consumption‟, NAC, and divided by typical production to calculate „normalized energy intensity” NEI. 

These steps are repeated on sequential sets of 12 months of data to generate a series of „sliding‟ NEIs and regression coefficients.  The 

method removes the effects of changing weather and production levels, so that the change in energy intensity is a sole function of 

changing energy efficiency. Deficiencies of other methods of calculating NEI are identified.  The method is demonstrated in a case 

study example.  

INTRODUCTION 

Global climate change caused by high atmospheric CO2 concentrations has caused many institutions to institute policies aimed at 

lowering carbon emissions. One such institution is the International Organization for Standardization (ISO). ISO is now developing an 

energy management standard for manufacturers, ISO 50001, which is similar in structure to its well-known quality management 

standard, ISO 9001, and environmental management standard 14001. ISO 50001 is expected to affect as much as 60% of global 

energy use, was recently approved as a Draft International Standard, and could be published as a full International Standard as soon as 

early 2011. ISO 50001 will provide a framework for industrial plants, commercial buildings or entire organizations to manage energy 

(ISO 2010). In order to receive certification under ISO 50001, industrial facilities will have to demonstrate a reduction in energy 

intensity normalized for weather and production. This method will provide a way for plants to track their energy intensity over time in 

units of energy per part. This is useful not only as a potential way to achieve ISO 50001 certification, but also as a way to 

communicate energy performance in readily understood units, energy per part produced. 

This paper describes a four-step method to analyze utility billing, weather, and production data to understand a company‟s energy 

intensity over time.  The method uses regression modeling of utility billing data against weather and production data. The regression 

models are then driven with typical weather and production data to calculate the „normal annual consumption‟, NAC.  These steps are 

repeated on sequential sets of 12 months of data to generate a series of „sliding‟ NACs and regression coefficients.  The NACs for fuel 

use and electricity use are then combined and divided by typical production to produce the „normal energy intensity‟, NEI. These steps 

are repeated on sequential sets of 12 months of data to generate a series of „sliding‟ NEIs and regression coefficients.  The method can 

quantify changes in energy intensity with the effects of changing weather or production removed, so that the change in energy 

intensity reflects changes in energy efficiency. 

OVERVIEW OF THE METHOD 

The method of using „sliding‟ NEI analysis to quantify plant energy intensity is accomplished through four sequential steps.  These 

steps are discussed individually below.  
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DESCRIPTION OF DATA AND SOFTWARE TOOLS 

Utility bills are widely available, are generally accurate, and measure the total quantity of fuel and electricity used by facilities.  

Because of these attributes, the method uses utility bills as the principle source of energy use data.  The method can be used with sub-

metered data; however, sub-metered data may not capture interaction effects between systems and thus may not capture the total 

change in energy efficiency.  In addition, the method can also be used with data measured over shorter time intervals, such as hourly 

or daily data.  However, it has been shown that regression models of short time-interval energy data and monthly energy data versus 

temperature and production generate similar coefficients (Carpenter et al., 2009); thus, the use of short time-interval data for 

measuring long term changes in energy intensity does not appreciably change the results. 

The method uses both actual and typical weather data.  Actual average daily temperatures for 157 U.S. and 167 international cities 

from January 1, 1995 to present are available free-of-charge from the University of Dayton Average Daily Temperature Archive 

(Kissock 1999).  Typical weather data is derived from TMY2 data files (NREL 1995).  TMY2 files contain typical meteorological 

year (TMY) data sets derived from the 1961-1990 National Solar Radiation Data Base (NSRDB).  These files include typical hourly 

values of solar radiation, ambient temperature, ambient humidity and wind speed for a 1-year period.   

This method also uses both actual and typical production data.  Actual production data is generally available from facility management 

or accounting departments.  Typical production data can be derived from historical averages, budgeted values, or projected 

production.  The case studies illustrating the method use historical averages for typical production.     

The algorithms used to generate multi-variable change point models are described in Kissock et al., 2006.  These methods have been 

incorporated into software applications used for this analysis (Kissock 2005; Kissock, 2006) 

STEP 1:  DEVELOPING ENERGY SIGNATURE MODELS 

The first step of the method is to create statistical models of each facility‟s electricity and fuel use as functions of weather and 

production using utility billing data, actual weather data, and actual production data.  In many industrial facilities, the weather 

dependence of energy use can be accurately described using a three-parameter change-point model.  Three-parameter change-point 

models describe the common situation when cooling (heating) begins when the air temperature is more (less) than some building 

balance temperature.  For example, consider the common situation where electricity is used for both air conditioning and production-

related tasks such as lighting and air compression.  During cold weather, no air conditioning is necessary, but electricity is still used 

for production purposes.  As the air temperature increases above some balance-point temperature, air conditioning electricity use 

increases as the outside air temperature increases (Figure 1a).  The regression coefficient 1 describes non-weather dependent 

electricity use, and the regression coefficient 2 describes the rate of increase of electricity use with increasing temperature, and the 

regression coefficient 3 describes the change-point temperature where weather-dependent electricity use begins.  This type of model 

is called a three-parameter cooling (3PC) change point model.  Similarly, when fuel is used for space conditioning and production-

related tasks, fuel use can be modeled by a three-parameter heating (3PH) change point model (Figure 1b). 

 

Figure 1- (a) 3PC (cooling) and (b) 3PH (heating) regression models 

These basic change-point models can be extended to include the dependence of energy use on the quantity of production by adding an 

additional regression coefficient.  The functional forms for best-fit multi-variable three-parameter change-point models for cooling 

energy use, EC, (3PC-MVR) and heating energy use, EH, (3PH-MVR), respectively, are: 

            (1) PTEC 4321
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             (2) 

where β1 is the constant term, β2 is the temperature-dependent slope term, β3 is the temperature change-point, and β4 is the production 

dependent term.  T is outdoor air temperature and P is the quantity of production.  The superscript + notation indicates the parenthetic 

term evaluates to zero when the value of the enclosed term is negative. 

The use of a single regression coefficient, β4, and a single metric of production, P, is arbitrary; additional terms can be added to 

account for multiple products.  The number of production variables needed to characterize plant energy use depends on the plant and 

process.  In many plants, such as auto assembly plants or foundries, the relationship between energy use and production is accurately 

characterized by a single variable.  In other plants with a heterogeneous product mix, multiple variables for the most energy-intensive 

products may be needed.  In this paper, the method is demonstrated using one production variable; however, the methodology is 

unchanged with the addition of production variables.    

In Equations 1 and 2, the β1 term represents energy use that is independent of both weather and production, such as lighting energy use 

in plants with limited daylighting.  The β2·(T – β3)
+

 or     –β2·(β3 – T)
+ 

term represents outdoor air temperature-dependent energy use.  

Because several studies have shown that outdoor air temperature is the single most important weather variable for influencing energy 

use in most buildings, this is referred to as weather-dependent energy use. (Fels 1986b; Kissock et al. 1998)  In cases for which the 

weather dependent term represents space-conditioning energy use, the coefficient, β2, represents the overall building load coefficient, 

UA, divided by the efficiency of the space conditioning equipment, η.  In the case of 3PC or 3PC-MVR models, this coefficient is 

referred to as the cooling slope (CS).  Similarly, in the case of 3PH or 3PH-MVR models, this coefficient is referred to as the heating 

slope (HS).  The coefficient, β3, represents the building balance temperature, which is the outdoor air temperature below which 

heating energy is used or above which cooling energy is used.  The β4·P term represents production-dependent energy use.  Using 

these terms, these simple regression equations can statistically disaggregate whole-plant energy use into independent, weather-

dependent and production-dependent components.  The interpretation and use of this technique is called Lean Energy Analysis 

(Kissock and Seryak, 2004a; Kissock and Seryak, 2004b and Patil et al. 2005, Kissock and Eger, 2006; Eger and Kissock, 2007) and is 

useful for identifying energy saving opportunities, measuring energy effects of productivity changes, developing energy budgets, and 

measuring energy savings. 

STEP 2: NORMALIZE ANNUAL ENERGY CONSUMPTION 

Utility bills show the actual annual energy consumption during a billing period.  However, that energy consumption might be affected 

by unusual weather or production.  This makes it difficult to assess a facilities energy performance over time when weather or 

production changes.  Both of these problems can be eliminated by driving the energy signature model with “typical” weather and 

production.  The resulting annual energy use is called the Normalized Annual Consumption, (NAC).  To calculate the NAC, the 

energy signature models developed in Step 1 are driven with typical weather data from TMY2 files and typical production data from 

historical records. Thus, NAC represents the “noise-free” energy use of a facility after changes due to abnormal weather and 

production variances have been removed.  As such, NAC reveals the true energy characteristics of facilities and manufacturing 

processes, and allows comparison of facility energy use over time. 

STEP 3: SLIDING NAC ANALYSIS 

The change in energy characteristics of a manufacturing facility can be determined by comparing the facility‟s NAC during sequential 

12-month periods.  This is called a „sliding‟ NAC analysis.  To calculate the „sliding‟ NAC, an energy-signature model is created for 

each set of 12 sequential months, and then driven with typical weather from a TMY2 file and typical production from a typical 

independent variable (TIV) file to create a sequence of NACs.  The sliding NAC analysis illustrates how the building‟s fundamental 

energy use characteristics change over time.  Figure 2 shows a graphical representation of how a „sliding‟ NAC is calculated using the 

sequential dataset.   

 

Figure 2-Graphical representation of sliding NAC 
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STEP 4: COMBINE ENERGY STREAMS AND DIVIDE BY TYPICAL PRODUCTION 

Once the NAC is calculated for plant electricity and fuel, the Normal Energy Intensity (NEI) can be calculated. To calculate the 

„sliding‟ NEI, the „sliding‟ NAC for electricity and fuel are converted into common units and summed. The sum of the energy streams 

is then divided by the typical production value to create sequential NEIs. 

CASE STUDY 

The following case study illustrates the method when both weather and production influence plant energy intensity. Because of a 

corporate initiative to lower plant energy intensity, the plant in this case study made an effort to lower its energy intensity and track it 

on a monthly basis by dividing their total energy use each month by the total production for the month. They noticed, however, that 

their energy intensity would increase during shutdown months when production was low and during summer months because part of 

the plant was air conditioned. Therefore they are an ideal case study to illustrate the effectiveness of this method.  

Figure 3 shows a time trend of total plant energy use and production. Inspection of the graph shows that production dropped off 

significantly in late 2008, corresponding to the start of the recession. At the same time, energy use dropped, but to a lesser extent. 

Because unnormalized energy intensity is total energy divided by production, the plant‟s unnormalized energy intensity increased 

significantly when the economy receded.  

 

  Figure 3- Plant monthly energy use and production  

Figure 4a shows the 3PH-MVR model of natural gas use as a function of outdoor air temperature and production. Model coefficients 

and goodness-of-fit statistics are shown in Table 1. An R
2
 of 0.51 and CV-RMSE of 9.9% indicates the 3PH-MVR model is able to 

account for about half of the variation in fuel use. From the 3PH-MVR model, natural gas energy use can be disaggregated into 

constituent components according to the model coefficients.  Figure 4b shows this disaggregated breakdown.  Independent natural gas 

use accounts for about 62% of the total.  Weather-dependent natural gas use accounts for about 3% of the total.  Production-dependent 

natural gas use accounts for about 35% of the total.  These data indicate that the majority of natural gas use in the facility is either 

independent or production dependent. 
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(a) (b) 

Figure 4- (a) 3PH-MVR model of fuel use as a function of weather and production (light squares indicate the actual energy use 

and dark squares indicate predicted energy use) and (b) natural gas energy use breakdown 

Table 1- 3PH-MVR model coefficients and statistical indicators   

Coefficient Description Units 
Value  

Standard 

Error 

 
R

2
   0.51 

CV-RMSE   9.9% 

β1 Independent Fuel mmBtu/mo 2,201.2  

β2 Temp. Dependent mmBtu/mo-F -11,364  

β3  Balance Temp. F 23.05  

β4 Prod. Dependent mmBtu/ton 4.65  

 

Figure 5a shows the 3PC-MVR model of electricity use as a function of outdoor air temperature and production.  Model coefficients 

and goodness-of-fit statistics are shown in Table 2. An R
2
 of 0.75 and CV-RMSE of 9.4% indicates the 3PC-MVR model is able to 

account for most of the variation in electricity use.  From the 3PC-MVR model, electricity use can be disaggregated into constituent 

components according to the model coefficients.  Figure 5b shows this disaggregated breakdown.  Independent electricity use 

accounts for about 56% of the total.  Weather-dependent electricity use accounts for about 14% of the total.  Production-dependent 

electricity use accounts for about 30% of the total.  These data indicate that the majority of natural gas use in the facility is either 

independent or production dependent. 
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(a) (b) 

Figure 5- (a) 3PC-MVR model of electricity use as a function of weather and production (light squares indicate the actual energy 

use and dark squares indicate predicted energy use) and (b) electricity use breakdown 

 

Table 2- 3PC-MVR model coefficients and statistical indicators   

Coefficient Description Units 
Value  

Standard 

Error 

 
R

2
   0.75 

CV-RMSE   9.4% 

β1 Independent 

Electricity 

MWh/mo 1,061.86  

β2 Temp. Dependent MWh /mo-F 8.38  

β3 Balance Temp. F 22.96  

β4 Prod. Dependent MWh/ton 2.20  

 

Figure 6 shows the „sliding‟ NAC (solid lines) and actual use (dashed lines) for both electricity and natural gas over a 24 month 

period. For both electricity and natural gas, the actual consumption starts high and intersects the NAC around the fifth month. After 

that, actual consumption stays below the NAC for the remainder of the time period. 

  

(a) (b) 

Figure 6- (a) Sliding actual facility electricity use and NAC analysis and (b) Sliding actual facility fuel use and NAC analysis 
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The individual NACs are then combined and divided by typical production to achieve plant NEI. The unnormalized energy intensity is 

the monthly energy use divided by the production for that month. Figure 7 shows the „sliding‟ NEI (solid line) and unnormalized 

energy intensity (dashed line). Unnormalized energy intensity increases by about 10%. In contrast, NEI remains fairly constant before 

dropping towards the end of the time period. In total, plant NEI declined by about 7% during the year. Thus, unnormalized energy 

intensity suggests that the plant became much less energy efficient, when in fact it became more energy efficient.  

The biggest reason for the discrepancy between the NEI and unnormalized energy intensity is the decrease in production experienced 

in late 2008. The baseline energy signature models indicated that plant natural gas and electricity use is largely independent of weather 

and production. Thus, plant energy use did not drop significantly when production declined. When a slightly reduced energy use is 

divided by a significantly reduced production value, a high unnormalized energy intensity is the result. On the other hand, NEI, 

eliminates these effects to show the true change in energy intensity. 

 

Figure 7- Sliding NEI analysis and unnormalized energy intensity 

OTHER METHODS 

It is tempting to use other simpler methods to determine how energy efficiency changes over time. However, as demonstrated below, 

these methods are typically affected by changing weather and production even when energy efficiency remains the same. Thus, they 

are not good measures of energy intensity. 

UNNORMALIZED ENERGY INTENSITY 

As shown in the preceding case study, unnormalized energy intensity, simply dividing actual energy use by actual production, is a 

poor indicator of energy efficiency since changes in weather and production cause changes in unnormalized energy intensity even if 

the energy efficiency of the plant remains unchanged.  This effect also appears at a different facility shown in Figure 8 below, where 

the weather dependency of the unnormalized fuel energy intensity is obvious; energy use increases during winter and decreases during 

summer.  Thus in this case, the unnormalized energy intensity is really a picture of the weather and not the energy efficiency of the 

plant.    
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Figure 8- Sliding fuel NEI and unnormalized fuel energy intensity 

SUMMING ENERGY STREAMS 

When calculating total energy intensity in facilities that use multiple energy sources, such as electricity and fuel, it is convenient to 

add all energy sources together before calculating a single regression model of total energy use versus weather and production.  

Unfortunately, this practice results in the loss of important information, especially when the different energy sources of energy have 

different temperature dependencies, as most do.  

Figure 9 shows how adding energy sources before statistical analysis can cause information about the how the plant uses energy to be 

lost.  It is clear that both of the plant‟s energy sources have weather dependency. However it can also be seen that if the energy 

sources were combined before anyone analyzed the data, it would appear that plant energy use had no weather dependency. Thus, the 

regression model would not be able to account for, and remove the effects of, changing weather.  Therefore all plant energy sources 

should be analyzed separately, then summed when calculating overall plant energy intensity. 

 

Figure 9- Effect of adding energy sources before statistical analysis 

 

INCORRECT WEATHER AND PRODUCTION NORMALIZATION 

Some methods for calculating plant energy intensity do not completely normalize for changes in weather and production. One such 

method is the Superior Energy Performance Default Method for calculating energy intensity (SEP, 2009). In the Default Method, the 

Key Performance Indicator (KPI) is the ratio of actual energy usage, E, to baseline usage that would have been expected with current 

production levels and external factors, Êb.  
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Where Êb is determined from the regression model of baseline energy use.  The energy intensity improvement, EI, then is one minus 

the KPI. 

 

To understand how this method would show energy intensity improvement even when the plant‟s energy efficiency remains 

unchanged, consider the following example.  Assume a plant uses energy according to the following formula. 

E =  +  W +   P 

Where E is the energy usage,  is the energy usage independent of production and weather,  is the weather-dependent coefficient, W 

is the weather for the current period,  is the production-dependent coefficient, and P is production for the current period. Assume that 

the baseline model yielded the following values for the coefficients:  b = 100,  b = 2, and b = 5. Now assume that insulation in the 

facility‟s envelope was increased, causing  to drop from 2 to 1. Also assume that weather for the period was 250 and Production was 

100.   

Table 3 shows the calculation for KPI under these conditions.  This yields a KPI of 0.7727. If the Default Method normalizes for 

changes in weather and production, then changing weather or production should not affect the KPI, and the KPI should remain 

constant at 0.7727. 

Table 3- KPI calculation for weather related improvement 

 

Now assume, that production, P, drops to 50. Table 4 shows the calculation for KPI under these conditions. This yields a KPI of 

0.7059 when it should be 0.7727, a difference of 6.68%, even though the energy efficiency of the plant remains unchanged. 

Table 4- KPI calculation for weather related improvement with change in production 

 

Using this methodology, it is easy to construct many other situations involving changing weather and production cause the SEP 

Default Method to fail to properly normalize for changes in weather and production; hence, it cannot be depended on to verify plant 

energy intensity improvement. On the other hand, SEP also endorses two other methods for calculating plant energy intensity, the 

Backcast Method and the Standard Conditions Method. These methods are analogous to the method presented in this paper and 

effectively normalize plant energy use for changes in weather and production.  Thus, we endorse the use of the Backcast and Standard 

Conditions methods for measuring improvements in energy intensity. 

SUMMARY AND CONCLUSION 

This paper describes a four-step method to analyze monthly utility billing, weather and production data to calculate a facility‟s 

normalized energy intensity. The method accurately describes changes in energy efficiency independent of changing weather and 

production, where simpler methods fail.  However, a drawback in the method is the time delay between when energy efficiency 

improvements are made and when they completely manifest themselves in the NEI. For example, if energy intensity were decreased 

by 25% in the first month after the baseline period, NEI would not show a 25% reduction in energy intensity until 12 months after the 

initial reduction.  This is because of the nature of sliding NAC analysis; in that all new calculated NAC‟s are computed with usage 

data from the previous 11 months.  

b b base W P E Êb KPI

100 100 1 2 5 5 250 100 850         1,100     0.7727

b b base W P E Êb KPI

100 100 1 2 5 5 250 50 600         850         0.7059
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